Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach
نویسندگان
چکیده
Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards design of synthetic biological switches.
منابع مشابه
Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis
cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR ...
متن کاملConvergent transcription confers a bistable switch in Enterococcus faecalis conjugation.
Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from...
متن کاملA synthetic phage regulatory circuit
Analysis of synthetic gene regulatory circuits can provide insight into circuit behavior and evolution. An alternative approach is to modify a naturally occurring circuit, by using genetic methods to select functional circuits and evolve their properties. We have applied this approach to the circuitry of phage . This phage grows lytically, forms stable lysogens, and can switch from this regulat...
متن کاملIdentification of ta-siRNAs and Cis-nat-siRNAs in Cassava and Their Roles in Response to Cassava Bacterial Blight
Trans-acting small interfering RNAs (ta-siRNAs) and natural cis-antisense siRNAs (cis-nat-siRNAs) are recently discovered small RNAs (sRNAs) involved in post-transcriptional gene silencing. ta-siRNAs are transcribed from genomic loci and require processing by microRNAs (miRNAs). cis-nat-siRNAs are derived from antisense RNAs produced by the simultaneous transcription of overlapping antisense ge...
متن کاملHuman cis natural antisense transcripts initiated by transposable elements.
The capacity of human transposable elements (TEs) to promote cis natural antisense transcripts (cis-NATs) is revealed by the discovery of 48,718 human gene antisense transcriptional start sites (TSSs) within TE sequences. TSSs that yield cis-NATs are overrepresented among TE sequences, and TE-initiated cis-NATs are more abundant close to the 3' ends of genes. The TE sequences that promote antis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015